Analyzing Service Queue Performance at Fuel Stations Using Fishbone Diagram and Queuing Theory: Evidence from Surabaya–Gresik Toll Rest Area
DOI:
https://doi.org/10.61132/epaperbisnis.v2i4.629Keywords:
Fishbone Diagram, Queuing System, Queuing Theory, Service Efficiency, Waiting TimeAbstract
This study aims to determine and analyze service waiting times, identify the root causes of long queues, and develop a strategy to improve service performance at the 5361137-gas station (SPBU) at the Surabaya-Gresik Toll Rest Area. The research method used is a mixed-methods approach with an exploratory sequential design. This study combines quantitative analysis using Queuing Theory to measure system performance (arrival rates and service times) and descriptive qualitative analysis using a Fishbone Diagram. Data were collected through direct observation, interviews, and g-form techniques. The results indicate that the current queuing system performance is in a critical or severe condition, indicated by a server utilization rate of 0.94 to 1.02 during peak hours. The average time spent by vehicles in the system is 14.3 minutes, of which 9.6 minutes (67%) is spent waiting in the queue. Fishbone diagram analysis revealed that the root cause of the main problem lies in the complex interaction of factors: Machine factors (EDC signal failure and pump repair downtime), Human and Method factors (implementation of static shifts and reactive maintenance), and Environmental factors (narrow layouts that hinder large vehicle maneuvers). As a solution, this study formulated a hybrid improvement strategy that includes short-term business process engineering (the use of Floating Staff and lane segregation) and long-term investment in additional pumps to change the queuing model from Single Channel to Dual Channel. This strategy is expected to reduce the utility level to a safe zone below 0.80 with a target waiting time of 3–5 minutes.
Downloads
References
Bataona, B. L. V., & Nyoko, A. E. L. (2020). Analisis sistem antrian dalam optimalisasi layanan di Supermarket Hyperstore. Journal of Management, 12(2), 225-237. https://doi.org/10.35508/jom.v12i2.2695
BPS Jawa Timur. (2022). Jumlah kendaraan bermotor menurut kabupaten/kota dan jenis kendaraan di Provinsi Jawa Timur (unit) - 2022. https://jatim.bps.go.id/id/statistics-table/3/VjJ3NGRGa3dkRk5MTlU1bVNFOTVVbmQyVURSTVFUMDkjMw==/jumlah-kendaraan-bermotor-menurut-kabupaten-kota-dan-jenis-kendaraan-di-provinsi-jawa-timur--unit---2022.html
Durroh, B., & Yusuf, M. (2023). Analysis of quality control of tea products using the fishbone diagram approach at PT Candi Loka, Indonesia. Asian Journal of Research in Crop Science, 8(1), 16-24. https://doi.org/10.9734/AJRCS/2023/v8i1154
Gaitonde, J. (2020). Stability and learning in strategic queuing systems. ACM Transactions, 3(2), 319-347. https://doi.org/10.1145/3391403.3399491
Harinta, Y. W., & Arianti, Y. S. (2023). The fishbone diagram analysis to identify factors influencing the decreasing interest of farmers in soybean cultivation. AMCA Journal of Community Development, 3(2), 100-102. https://doi.org/10.51773/ajcd.v3i2.348
Heizer, J., & Render, B. (2004). Operations management (7th ed.). Pearson Education.
Heizer, J., & Render, B. (2016). Manajemen operasi: Manajemen keberlangsungan dan rantai pasokan (11th ed.). Salemba Empat.
Jencks, C. (1990). The new moderns. Rizzoli.
Kakiay, T. J. (2004). Dasar teori antrian untuk kehidupan nyata. Andi.
Kusuma, Y. A., Khoiri, H. A., A, I. M. A., & Herlambang, B. (2024). Quality control to reduce production defects using control chart, fishbone diagram, and FMEA. Teknosains: Jurnal Sains, Teknologi dan Informatika, 11(1), 176-186. https://doi.org/10.37373/tekno.v11i1.968
Mas, L., Vilaplana, J., Mateo, J., & Solsona, F. (2022). A queuing theory model for fog computing. The Journal of Supercomputing, 78(8), 11138-11155. https://doi.org/10.1007/s11227-022-04328-3
Nampoothiri, S., Orlandini, E., Seno, F., & Baldovin, F. (2022). Brownian non-Gaussian polymer diffusion and queuing theory in the mean-field limit. New Journal of Physics, 24(1). https://doi.org/10.1088/1367-2630/ac3b8f
Notoatmodjo, S. (2018). Metodologi penelitian kesehatan. Rineka Cipta.
Render, B., & Heizer, J. (2012). Manajemen operasional. Salemba Empat.
Ricardianto, P., Putra, A. P., Adi, E. N., Wardana, A., Rafi, S., Ozali, I., & Endri, E. (2022). Evaluation of the two-runway queuing system: Evidence from Soekarno-Hatta International Airport in Indonesia. WSEAS Transactions on Systems and Control, 17, 142-152. https://doi.org/10.37394/23203.2022.17.16
Sakdiyah, S. H., Eltivia, N., & A., A. A. (2022). Root cause analysis using fishbone diagram: Company management decision making. JABTER, 1(6), 566-576. https://doi.org/10.54408/jabter.v1i6.103
Siregar. (2022). Pengaruh brand image dan brand awareness terhadap. Journal of Social Research, 698.
Thomas, T. T. D., & Dimyati, A. (1992). Operations research. Sinar Baru.
Tika, D. (2021). Analisis model antrian M/M/1 untuk meningkatkan pelayanan kasir di Toko Swalayan OMI Cempaka Indah Jakarta Pusat (Undergraduate thesis, Sekolah Tinggi Ilmu Ekonomi Indonesia).
Tsou, P., & Hsu, H. (2022). Applications of fishbone diagram and DEMATEL technique for improving warehouse operations: A case study on YMT overseas imported components. China-USA Business Review, 21(4), 143-154. https://doi.org/10.17265/1537-1514/2022.04.001
Wujie, J., Le, J., Lixin, Y., & Cheng, Z. (2022). Analyzing and predicting railway operational accidents based on fishbone diagram and Bayesian networks. Proceedings of International Conference, 3651, 542-552.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 ePaper Bisnis : International Journal of Entrepreneurship and Management

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

